Learning to Negotiate Optimally in Non-stationary Environments

نویسندگان

  • Vidya Narayanan
  • Nicholas R. Jennings
چکیده

We adopt the Markov chain framework to model bilateral negotiations among agents in dynamic environments and use Bayesian learning to enable them to learn an optimal strategy in incomplete information settings. Specifically, an agent learns the optimal strategy to play against an opponent whose strategy varies with time, assuming no prior information about its negotiation parameters. In so doing, we present a new framework for adaptive negotiation in such non-stationary environments and develop a novel learning algorithm, which is guaranteed to converge, that an agent can use to negotiate optimally over time. We have implemented our algorithm and shown that it converges quickly in a wide range of cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

مکان یابی وفقی موبایل به روش آزمون باقی‌مانده

Determination of mobile localization with time of arrival (TOA) signal is a requirement in cellular mobile communication. In some of the previous methods, localization with non-line-of-sight (NLOS) paths can lead to large position error. Also for simplicity, in most simulations suppose non stationary actual environments as stationary. This paper proposes (residual test + recursive least square)...

متن کامل

Anomaly detection in non-stationary and distributed environments

Anomaly detection is an important aspect of data analysis in order to identify data items that significantly differ from normal data. It is used in a variety of fields such as machine monitoring, environmental monitoring and security applications and is a well-studied area in the field of pattern recognition and machine learning. In this thesis, the key challenges of performing anomaly detectio...

متن کامل

An Exploration Strategy Facing Non-Stationary Agents

The success or failure of any learning algorithm is partially due to the exploration strategy it exerts. However, most exploration strategies assume that the environment is stationary and non-strategic. This work investigates how to design exploration strategies in non-stationary and adversarial environments. Our experimental setting uses a two agents strategic interaction scenario, where the o...

متن کامل

Optimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor

In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006